Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5
Compound HgxZn1-xTe XM value 1.65 1.682049 1.698306 1.71472 1.731293 1.74803 1.76492 1.781978 1.799201 1.81659 XN value 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
(XM/XN)2 0.617347 0.641562 0.654023 0.666727 0.679677 0.69288 0.706336 0.720056 0.734042 0.748299 (XM-XN)2 0.2025 0.174683 0.161358 0.148441 0.135945 0.12389 0.112279 0.101138 0.09048 0.080321
2(XM-XN)2 1.150691 1.128717 1.11834 1.108371 1.098812 1.08967 1.080934 1.072619 1.064724 1.057253 (2(XM-XN)2)1/4 1.035714 1.030733 1.028356 1.026057 1.023837 1.0217 1.019647 1.01768 1.015803 1.014016
28.8/(2(XM-XN)2)1/4 27.80692 27.94128 28.00587 28.06863 28.12947 28.1883 28.24507 28.29965 28.35197 28.40192
M-VALUES 192.99 207 213 220 227 234 240 247 254 261 RO-VALUES 6.34 6.52 6.61 6.71 6.8 6.89 6.98 7.07 7.16 7.26 ALPHA-M 95.97 99.1 101 102 104 105
ALPHA-M*RO/M 3.152753 3.121411 3.134319 3.111 3.115419 3.09167 3.111917 3.11996 3.100787 3.115402 TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24
(4PIN/3)*ALPHAM*RO/M 7.95E+24 7.87E+24 7.9E+24 7.84E+24 7.86E+24 7.8E+24 7.85E+24 7.87E+24 7.82E+24 7.86E+24 1-(4PIN/3)*ALPHAM*RO/M 7.95E+24 7.87E+24 7.9E+24 7.84E+24 7.86E+24 7.8E+24 7.85E+24 7.87E+24 7.82E+24 7.86E+24
1+2*(4PIN/3)*ALPHAM*RO/M 1.59E+25 1.57E+25 1.58E+25 1.57E+25 1.57E+25 1.6E+25 1.57E+25 1.57E+25 1.56E+25 1.57E+25 1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 13.90346 13.97064 14.00293 14.03431 14.06474 14.0942 14.12254 14.14983 14.17598 14.20096
Eg value 5.078125 5.42909 5.618932 5.819193 6.030568 6.2538 6.489707 6.739148 7.003064 7.282468
X value 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1-x value 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
Xm value 1.834148 1.851875 1.869773 1.887844 1.90609 1.924513 1.943113 1.961893 1.980855 2 Xn value 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
(XM/XN)2 0.762834 0.777651 0.792755 0.808153 0.82385 0.839852 0.856165 0.872795 0.889748 0.907029 (XM-XN)2 0.070678 0.061566 0.053004 0.04501 0.037601 0.030796 0.024613 0.019073 0.014196 0.01
2(XM-XN)2 1.05021 1.043598 1.037423 1.03169 1.026406 1.021575 1.017207 1.013308 1.009888 1.006956 (2(XM-XN)2)1/4 1.012323 1.010726 1.009227 1.00783 1.006537 1.005351 1.004274 1.003311 1.002463 1.001734
28.8/(2(XM-XN)2)1/4 28.44942 28.49438 28.53668 28.57624 28.61296 28.64672 28.67742 28.70497 28.72924 28.75014 M-VALUES 267 274 281 288 294 301 308 315 321 328.19 RO-VALUES 7.35 7.44 7.53 7.62 7.71 7.8 7.9 7.99 8.08 8.17 ALPHA-M 113 115 116 118 119 121 123 124 126 127.32
ALPHA-M*RO/M 3.110674 3.122628 3.10847 3.122083 3.120714 3.135548 3.15487 3.14527 3.171589 3.169519 TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24
(4PIN/3)*ALPHAM*RO/M 7.84E+24 7.87E+24 7.84E+24 7.87E+24 7.87E+24 7.91E+24 7.96E+24 7.93E+24 8E+24 7.99E+24 1-(4PIN/3)*ALPHAM*RO/M 7.84E+24 7.87E+24 7.84E+24 7.87E+24 7.87E+24 7.91E+24 7.96E+24 7.93E+24 8E+24 7.99E+24
1+2*(4PIN/3)*ALPHAM*RO/M 1.57E+25 1.57E+25 1.57E+25 1.57E+25 1.57E+25 1.58E+25 1.59E+25 1.59E+25 1.6E+25 1.6E+25 1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.22471 14.24719 14.26834 14.28812 14.30648 14.32336 14.33871 14.35248 14.36462 14.37507
Eg value 7.578454 7.892204 8.224997 8.578217 8.953362 9.352056 9.776058 10.22728 10.70779 11.21983
Doping of Hg component in a Binary semiconductor like CdTe and changing the composition of do pant has actually resulted in Variation of Band Energy Gap .
Future Plans: 1) Current data set of Electro Negativity values of HgxZn1-xTe II-VI Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future.
2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance.
Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications.
2) Limited theoretical work on Electro Negativity values and Band Energy Gap of HgxZn1-xTe II-VI Ternary Semiconductors with in the Composition range of (0 3) Our results regarding the Electro Negativity values and Band Energy Gap of II-VI Ternary Semiconductors are found to be in reasonable agreement with the experimental data Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering.
Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy.
References: 1) IUPAC Gold Book internet edition: "Electronegativity". 2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582.. 3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332 . 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6. 5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.. 6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793.. 7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585.. 8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167. 10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264.. 11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13) CRC Handbook of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259 15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical Polarizability, II-VI Ternary Semiconductors.,