Authors:V.Rama murthy & Alla Srivani Research Scholar Rayalaseema university Kurnool Abstract: HgxCd1-xTe II-VI Ternary semiconductor is very important as an x of a constituent in the semiconductor is going to have significant changes in calculating Physical Property like Band Energy Gap. These Ternary Compounds can be derived from binary compounds HgTe and CdTe by replacing one half of the atoms in one sub lattice by lower valence atoms, the other half by higher valence atoms and maintaining average number of valence electrons per atom. The subscript X refers to the alloy content or concentration of the material, which describes proportion of the material added and replaced by alloy material. This paper represents the HgxCd1-xTe II-VI Ternary Semiconductor Band Energy Gap values Keywords: Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical Polarizability, II-VI Ternary Semiconductor. Introduction: 1) In this opening talk of HgxCd1-xTe II-VI Ternary Semiconductor Band Energy Gap Electronegativity values of Ternary Semiconductors are denoted by symbols XM and XN and Band Energy Gap is denoted by Eg 2) Linus Pauling first proposed Electro Negativity in 1932 as a development of valence bond theory,[2] it has been shown to correlate with a number of other chemical properties. 3) The continuous variation of physical properties like Electro Negativity of ternary compounds with relative concentration of constituents is of utmost utility in development of solid-state technology. 4) In the present work, the solid solutions belonging to HgxCd1-xTe II-VI Ternary Semiconductor Band Energy Gap have been investigated. In order to have better understanding of performance of these solid solutions for any particular application, it becomes quite necessary to work on the physical properties like Electro Negativity of these materials. 5) Recently no other class of material of semiconductors has attracted so much scientific and commercial attention like the II-VI Ternary compounds. 6) Doping of Hg component in a Binary semiconductor like CdTe and changing the composition of do pant has actually resulted in lowering of Band Energy Gap. 7) Thus effect of do pant increases the conductivity and decreases the Band Energy Gap and finds extensive applications 8) The present investigation relates Band Energy Gap and Electro Negativity with variation of composition for HgxCd1-xTe II-VI Ternary Semiconductor. 9) The fair agreement between calculated and reported values of Band Energy Gaps of HgTe and CdTe Binary semiconductors give further extension of Band Energy Gaps for Ternary semiconductors. 10) The present work opens new line of approach to Band Energy Gap studies in HgxCd1-xTe II-VI Ternary Semiconductor Objective: The main Objective of this paper is to calculate HgxCd1-xTe II-VI Ternary Semiconductor Band Energy Gap values Purpose: The purpose of study is HgxCd1-xTe II-VI Ternary Semiconductor Band Energy Gap and effect of concentration in Electro Negativity values of II-VI Ternary Semiconductors to represent additivity principle even in very low concentration range. This paper includes Electro Negativity values of II-VI ternary semiconductors and Band Energy Gap values in composition range (0 Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 Compound HgxCd1-xTe XM value 1.69 1.718704 1.733238 1.747895 1.762676 1.777582 1.792614 1.807774 1.823061 1.838478 XN value 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 0.875466 (XM/XN)2 0.647642 0.669828 0.681205 0.692775 0.704541 0.716508 0.728677 0.741053 0.75364 0.76644 (XM-XN)2 0.1681 0.145387 0.134514 0.123978 0.113787 0.103953 0.094486 0.085396 0.076695 0.068394 2(XM-XN)2 1.123578 1.106027 1.097723 1.089735 1.082065 1.074714 1.067685 1.060979 1.0546 1.048549 (2(XM-XN)2)1/4 1.029558 1.025514 1.023583 1.021716 1.019914 1.018177 1.016508 1.014908 1.013379 1.011922 28.8/(2(XM-XN)2)1/4 27.97317 28.08349 28.13645 28.18787 28.23769 28.28585 28.33229 28.37695 28.41977 28.46068 M-VALUES 240.01 249 253 258 262 266 271 275 280 284 RO-VALUES 5.86 6.09 6.21 6.32 6.44 6.55 6.67 6.78 6.9 7.02 ALPHA-M 103.29 106 107 108 109 110 112 113 114 115 ALPHA-M*RO/M 2.521892 2.59253 2.626364 2.645581 2.679237 2.708647 2.756605 2.785964 2.809286 2.842606 TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 6.36E+24 6.54E+24 6.62E+24 6.67E+24 6.76E+24 6.83E+24 6.95E+24 7.03E+24 7.08E+24 7.17E+24 1-(4PIN/3)*ALPHAM*RO/M 6.36E+24 6.54E+24 6.62E+24 6.67E+24 6.76E+24 6.83E+24 6.95E+24 7.03E+24 7.08E+24 7.17E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.27E+25 1.31E+25 1.32E+25 1.33E+25 1.35E+25 1.37E+25 1.39E+25 1.41E+25 1.42E+25 1.43E+25 1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 13.98659 14.04174 14.06822 14.09393 14.11884 14.14292 14.16615 14.18848 14.20989 14.23034 Eg value 5.52091 5.869148 6.056006 6.252025 6.457747 6.673752 6.900662 7.139139 7.389891 7.653679 X value 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1-x value 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 XM value 1.854025 1.869703 1.885514 1.901459 1.917539 1.933755 1.950107 1.966598 1.983229 2 XN value 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 (XM/XN)2 0.779457 0.792696 0.80616 0.819852 0.833777 0.847938 0.86234 0.876986 0.891881 0.907029 (XM-XN)2 0.060504 0.053037 0.046004 0.039418 0.033292 0.027638 0.022468 0.017796 0.013636 0.01 2(XM-XN)2 1.04283 1.037446 1.032401 1.027699 1.023345 1.019342 1.015695 1.012412 1.009496 1.006956 (2(XM-XN)2)1/4 1.01054 1.009233 1.008004 1.006854 1.005786 1.004801 1.003901 1.003089 1.002366 1.001734 28.8/(2(XM-XN)2)1/4 28.49962 28.53652 28.57132 28.60395 28.63433 28.6624 28.68809 28.71132 28.73203 28.75014 M-VALUES 289 293 297 302 306 311 315 319 324 328 RO-VALUES 7.13 7.25 7.36 7.48 7.59 7.71 7.82 7.94 8.05 8.17 ALPHA-M 116.5 118 119 120 121.3 123 124 125 126 127.3 ALPHA-M*RO/M 2.874204 2.919795 2.948956 2.972185 3.008716 3.049293 3.078349 3.111285 3.130556 3.170857 TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 7.25E+24 7.36E+24 7.44E+24 7.49E+24 7.59E+24 7.69E+24 7.76E+24 7.85E+24 7.89E+24 8E+24 1-(4PIN/3)*ALPHAM*RO/M 7.25E+24 7.36E+24 7.44E+24 7.49E+24 7.59E+24 7.69E+24 7.76E+24 7.85E+24 7.89E+24 8E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.45E+25 1.47E+25 1.49E+25 1.5E+25 1.52E+25 1.54E+25 1.55E+25 1.57E+25 1.58E+25 1.6E+25 1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.24981 14.26826 14.28566 14.30197 14.31716 14.3312 14.34404 14.35566 14.36602 14.37507 Eg value 7.931315 8.223668 8.531672 8.856326 9.198704 9.559956 9.941317 10.34412 10.76978 11.21983 Doping of Hg component in a Binary semiconductor like CdTe and changing the composition of do pant has actually resulted in decrease of Band Energy Gap for good Electrical conduction. Future Plans: 1) Current data set of Electro Negativity values of HgxCd1-xTe II-VI Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future. 2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance. Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications. 2) Limited theoretical work on Electro Negativity values and Band Energy Gap of HgxCd1-xTe II-VI Ternary Semiconductors with in the Composition range of (0 3) Our results regarding the Electro Negativity values and Band Energy Gap of II-VI Ternary Semiconductors are found to be in reasonable agreement with the experimental data Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering. Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy. References: 1) IUPAC Gold Book internet edition: "Electronegativity". 2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582.. 3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332 . 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6. 5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.. 6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793.. 7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585.. 8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167. 10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264.. 11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13) CRC Handbook of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259 15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical Polarizability, II-VI Ternary Semiconductor,
|