Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5
Compound HgxCd1-xTe XM value 1.69 1.718704 1.733238 1.747895 1.762676 1.777582 1.792614 1.807774 1.823061 1.838478 XN value 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 0.875466 (XM/XN)2 0.647642 0.669828 0.681205 0.692775 0.704541 0.716508 0.728677 0.741053 0.75364 0.76644
(XM-XN)2 0.1681 0.145387 0.134514 0.123978 0.113787 0.103953 0.094486 0.085396 0.076695 0.068394 2(XM-XN)2 1.123578 1.106027 1.097723 1.089735 1.082065 1.074714 1.067685 1.060979 1.0546 1.048549
(2(XM-XN)2)1/4 1.029558 1.025514 1.023583 1.021716 1.019914 1.018177 1.016508 1.014908 1.013379 1.011922 28.8/(2(XM-XN)2)1/4 27.97317 28.08349 28.13645 28.18787 28.23769 28.28585 28.33229 28.37695 28.41977 28.46068
M-VALUES 240.01 249 253 258 262 266 271 275 280 284 RO-VALUES 5.86 6.09 6.21 6.32 6.44 6.55 6.67 6.78 6.9 7.02 ALPHA-M 103.29 106 107 108 109 110 112 113 114 115
ALPHA-M*RO/M 2.521892 2.59253 2.626364 2.645581 2.679237 2.708647 2.756605 2.785964 2.809286 2.842606
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24
(4PIN/3)*ALPHAM*RO/M 6.36E+24 6.54E+24 6.62E+24 6.67E+24 6.76E+24 6.83E+24 6.95E+24 7.03E+24 7.08E+24 7.17E+24 1-(4PIN/3)*ALPHAM*RO/M 6.36E+24 6.54E+24 6.62E+24 6.67E+24 6.76E+24 6.83E+24 6.95E+24 7.03E+24 7.08E+24 7.17E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.27E+25 1.31E+25 1.32E+25 1.33E+25 1.35E+25 1.37E+25 1.39E+25 1.41E+25 1.42E+25 1.43E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 13.98659 14.04174 14.06822 14.09393 14.11884 14.14292 14.16615 14.18848 14.20989 14.23034
Eg value 5.52091 5.869148 6.056006 6.252025 6.457747 6.673752 6.900662 7.139139 7.389891 7.653679
X value 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1-x value 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
XM value 1.854025 1.869703 1.885514 1.901459 1.917539 1.933755 1.950107 1.966598 1.983229 2 XN value 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
(XM/XN)2 0.779457 0.792696 0.80616 0.819852 0.833777 0.847938 0.86234 0.876986 0.891881 0.907029 (XM-XN)2 0.060504 0.053037 0.046004 0.039418 0.033292 0.027638 0.022468 0.017796 0.013636 0.01
2(XM-XN)2 1.04283 1.037446 1.032401 1.027699 1.023345 1.019342 1.015695 1.012412 1.009496 1.006956 (2(XM-XN)2)1/4 1.01054 1.009233 1.008004 1.006854 1.005786 1.004801 1.003901 1.003089 1.002366 1.001734
28.8/(2(XM-XN)2)1/4 28.49962 28.53652 28.57132 28.60395 28.63433 28.6624 28.68809 28.71132 28.73203 28.75014
M-VALUES 289 293 297 302 306 311 315 319 324 328 RO-VALUES 7.13 7.25 7.36 7.48 7.59 7.71 7.82 7.94 8.05 8.17 ALPHA-M 116.5 118 119 120 121.3 123 124 125 126 127.3
ALPHA-M*RO/M 2.874204 2.919795 2.948956 2.972185 3.008716 3.049293 3.078349 3.111285 3.130556 3.170857 TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24
(4PIN/3)*ALPHAM*RO/M 7.25E+24 7.36E+24 7.44E+24 7.49E+24 7.59E+24 7.69E+24 7.76E+24 7.85E+24 7.89E+24 8E+24 1-(4PIN/3)*ALPHAM*RO/M 7.25E+24 7.36E+24 7.44E+24 7.49E+24 7.59E+24 7.69E+24 7.76E+24 7.85E+24 7.89E+24 8E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.45E+25 1.47E+25 1.49E+25 1.5E+25 1.52E+25 1.54E+25 1.55E+25 1.57E+25 1.58E+25 1.6E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.24981 14.26826 14.28566 14.30197 14.31716 14.3312 14.34404 14.35566 14.36602 14.37507
Eg value 7.931315 8.223668 8.531672 8.856326 9.198704 9.559956 9.941317 10.34412 10.76978 11.21983
Doping of Hg component in a Binary semiconductor like CdTe and changing the composition of do pant has actually resulted in decrease of Band Energy Gap for good Electrical conduction.
Future Plans: 1) Current data set of Electro Negativity values of HgxCd1-xTe II-VI Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future.
2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance.
Conclusion:
1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications.
2) Limited theoretical work on Electro Negativity values and Band Energy Gap of HgxCd1-xTe II-VI Ternary Semiconductors with in the Composition range of (0 3) Our results regarding the Electro Negativity values and Band Energy Gap of II-VI Ternary Semiconductors are found to be in reasonable agreement with the experimental data Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering.
Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy.
References: 1) IUPAC Gold Book internet edition: "Electronegativity". 2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582.. 3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332 . 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6. 5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.. 6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793.. 7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585.. 8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167. 10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264.. 11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13) CRC Handbook of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259 15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical Polarizability, II-VI Ternary Semiconductor,