Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 Electro Negativity values of Elemental Semiconductors: Compound Al Ga As In P Sb N E.N value 1.5 1.8 2 1.7 2.1 1.9 3
Electro Negativity values of AlAsxP1-x III-V Ternary Semiconductor X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 Compound
AlAsxP1-x XM value 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 XN value 2.1 2.089779 2.084687 2.079608 2.074541 2.069486 2.064444 2.059414 2.054396 2.04939 (XM/XN)2 0.510204 0.515207 0.517727 0.520259 0.522804 0.525361 0.52793 0.530512 0.533107 0.535714
(XM-XN)2 0.36 0.347839 0.341859 0.335945 0.330097 0.324314 0.318597 0.312944 0.307355 0.30183 2(XM-XN)2 1.283426 1.272653 1.267389 1.262204 1.257098 1.252069 1.247117 1.24224 1.237437 1.232707 (2(XM-XN)2)1/4 1.06437 1.06213 1.06103 1.059943 1.058869 1.057809 1.056761 1.055726 1.054704 1.053695 28.8/(2(XM-XN)2)1/4 27.05826 27.11533 27.14345 27.17128 27.19883 27.2261 27.25309 27.2798 27.30623 27.33239
ALPHA-M 65.75 67.4228 68.2592 69.0956 69.932 70.7684 71.6048 72.4412 73.2776 74.114 RO-VALUES 2.42 2.559 2.6285 2.698 2.7675 2.837 2.9065 2.976 3.0455 3.115 M-VALUES 57.95 62.346 64.544 66.748 68.94 71.138 73.336 75.534 77.732 79.93 ALPHA-M*RO/M 2.745729 2.767378 2.779798 2.792892 2.807322 2.82226 2.837888 2.854145 2.870979 2.888341
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 6.92E+24 6.98E+24 7.01E+24 7.04E+24 7.08E+24 7.12E+24 7.16E+24 7.2E+24 7.24E+24 7.28E+24 1-(4PIN/3)*ALPHAM*RO/M 6.92E+24 6.98E+24 7.01E+24 7.04E+24 7.08E+24 7.12E+24 7.16E+24 7.2E+24 7.24E+24 7.28E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.38E+25 1.4E+25 1.4E+25 1.41E+25 1.42E+25 1.42E+25 1.43E+25 1.44E+25 1.45E+25 1.46E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 13.52913 13.55767 13.57172 13.58564 13.59941 13.61305 13.62654 13.6399 13.65312 13.66619
Eg value 3.777274 3.830978 3.858297 3.885932 3.913889 3.942171 3.970785 3.999734 4.029024 4.05866
X value 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1-x value 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
Compound XM value 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 XN value 2.044397 2.039415 2.034446 2.029489 2.024544 2.019612 2.014691 2.009782 2.004885 2 (XM/XN)2 0.538334 0.540967 0.543613 0.546272 0.548944 0.551629 0.554327 0.557038 0.559762 0.5625
(XM-XN)2 0.296368 0.290969 0.285633 0.280359 0.275147 0.269996 0.264907 0.259878 0.254909 0.25 2(XM-XN)2 1.228049 1.223462 1.218945 1.214497 1.210117 1.205805 1.201558 1.197377 1.19326 1.189207 (2(XM-XN)2)1/4 1.052698 1.051714 1.050742 1.049782 1.048834 1.047899 1.046975 1.046063 1.045162 1.044274 28.8/(2(XM-XN)2)1/4 27.35827 27.38387 27.40921 27.43427 27.45906 27.48358 27.50783 27.53181 27.55552 27.57897
ALPHA-M 74.9504 75.7868 76.6232 77.4596 78.296 79.1324 79.9688 80.8052 81.6416 82.478 RO-VALUES 3.1845 3.254 3.3235 3.393 3.4625 3.523 3.6015 3.671 3.7405 3.81 M-VALUES 82.128 84.326 86.524 88.722 90.92 93.118 95.316 97.514 99.712 101.9 ALPHA-M*RO/M 2.90619 2.924486 2.943197 2.962291 2.981741 2.993873 3.021608 3.041983 3.062624 3.083819
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24
(4PIN/3)*ALPHAM*RO/M 7.33E+24 7.37E+24 7.42E+24 7.47E+24 7.52E+24 7.55E+24 7.62E+24 7.67E+24 7.72E+24 7.78E+24 1-(4PIN/3)*ALPHAM*RO/M 7.33E+24 7.37E+24 7.42E+24 7.47E+24 7.52E+24 7.55E+24 7.62E+24 7.67E+24 7.72E+24 7.78E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.47E+25 1.47E+25 1.48E+25 1.49E+25 1.5E+25 1.51E+25 1.52E+25 1.53E+25 1.54E+25 1.56E+25 1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 13.67913 13.69194 13.7046 13.71713 13.72953 13.74179 13.75391 13.7659 13.77776 13.78949
Eg value 4.088645 4.118987 4.14969 4.180759 4.2122 4.244018 4.27622 4.30881 4.341794 4.375179
Doping of As component in a Binary semiconductor like AlP and changing the composition of do pant has actually resulted in lowering of Band Energy Gap.
Future Plans: 1) Current data set of Electro Negativity values of AlAsxP1-x III-V Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future.
2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance.
Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications.
2) Limited theoretical work on Electro Negativity values and Band Energy Gap of AlAsxP1-x III-V Ternary Semiconductors with in the Composition range of (0 3) Our results regarding the Electro Negativity values and Band Energy Gap of III-V Ternary Semiconductors are found to be in reasonable agreement with the experimental data Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering.
Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy.
References: 1) IUPAC Gold Book internet edition: "Electronegativity". 2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582.. 3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332 . 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6. 5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.. 6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793.. 7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585.. 8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167. 10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264.. 11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13) CRC Handbook of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259 15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical polarizability,