Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 Electro Negativity values of Elemental Semiconductors: Compound Al Ga As In P Sb N E.N value 1.5 1.8 2 1.7 2.1 1.9 3
Electro Negativity values of InPxAs1-x III-V Ternary Semiconductor
X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 Compound InPxAs1-x XM value 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 XN value 2 2.009782 2.014691 2.019612 2.024544 2.029489 2.034446 2.039415 2.044397 2.04939 (XM/XN)2 0.7225 0.715484 0.712002 0.708536 0.705088 0.701656 0.698241 0.694843 0.691461 0.688095 (XM-XN)2 0.09 0.095965 0.09903 0.102152 0.105329 0.108563 0.111854 0.115203 0.118609 0.122073
2(XM-XN)2 1.06437 1.06878 1.071053 1.073373 1.07574 1.078154 1.080616 1.083127 1.085688 1.088298 (2(XM-XN)2)1/4 1.015718 1.016768 1.017309 1.017859 1.01842 1.018991 1.019572 1.020164 1.020766 1.021379 28.8/(2(XM-XN)2)1/4 28.35432 28.32503 28.30999 28.29468 28.27911 28.26326 28.24715 28.23076 28.2141 28.19717
ALPHA-M 104.90 103.444 102.716 101.988 101.26 100.532 99.804 99.076 98.348 97.62 RO-VALUES 5.66 5.573 5.5295 5.486 5.4425 5.399 5.3555 5.312 5.2685 5.225 M-VALUES 189.74 185.345 183.1475 180.95 178.7525 176.555 174.3575 172.16 169.9625 167.765 ALPHA-M*RO/M 3.129198 3.11038 3.101151 3.092048 3.083076 3.074239 3.065542 3.056992 3.048593 3.040351
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 7.89E+24 7.84E+24 7.82E+24 7.8E+24 7.77E+24 7.75E+24 7.73E+24 7.71E+24 7.69E+24 7.67E+24
1-(4PIN/3)*ALPHAM*RO/M 7.89E+24 7.84E+24 7.82E+24 7.8E+24 7.77E+24 7.75E+24 7.73E+24 7.71E+24 7.69E+24 7.67E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.58E+25 1.57E+25 1.56E+25 1.56E+25 1.55E+25 1.55E+25 1.55E+25 1.54E+25 1.54E+25 1.53E+25 1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.17716 14.16252 14.155 14.14734 14.13955 14.13163 14.12357 14.11538 14.10705 14.09859
Eg value 6.7924 6.662277 6.598569 6.535742 6.473783 6.412677 6.352409 6.292966 6.234333 6.176497
X value 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1-x value 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
Compound XM value 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 XN value 2.054396 2.059414 2.064444 2.069486 2.074541 2.079608 2.084687 2.089779 2.094883 2.1 (XM/XN)2 0.684746 0.681413 0.678097 0.674797 0.671512 0.668244 0.664991 0.661755 0.658534 0.655329
(XM-XN)2 0.125596 0.129178 0.132819 0.13652 0.140281 0.144102 0.147984 0.151928 0.155933 0.16 2(XM-XN)2 1.090959 1.09367 1.096434 1.09925 1.10212 1.105043 1.10802 1.111053 1.114142 1.117287 (2(XM-XN)2)1/4 1.022003 1.022637 1.023283 1.023939 1.024607 1.025285 1.025975 1.026677 1.027389 1.028114 28.8/(2(XM-XN)2)1/4 28.17996 28.16248 28.14471 28.12667 28.10835 28.08974 28.07085 28.05167 28.03221 28.01246
ALPHA-M 96.892 96.164 95.436 94.708 93.98 93.252 92.524 91.796 91.068 90.34 RO-VALUES 5.1815 5.138 5.0945 5.051 5.0075 4.964 4.9205 4.877 4.8335 4.79 M-VALUES 165.5675 163.37 161.1725 158.975 156.7775 154.58 152.3825 105.185 147.9875 145.79 ALPHA-M*RO/M 3.032273 3.024366 3.016636 3.00909 3.001737 2.994585 2.987642 4.256207 2.974421 2.968164
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 7.65E+24 7.63E+24 7.61E+24 7.59E+24 7.57E+24 7.55E+24 7.53E+24 1.07E+25 7.5E+24 7.48E+24
1-(4PIN/3)*ALPHAM*RO/M 7.65E+24 7.63E+24 7.61E+24 7.59E+24 7.57E+24 7.55E+24 7.53E+24 1.07E+25 7.5E+24 7.48E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.53E+25 1.53E+25 1.52E+25 1.52E+25 1.51E+25 1.51E+25 1.51E+25 2.15E+25 1.5E+25 1.5E+25 1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.08998 14.08124 14.07236 14.06334 14.05417 14.04487 14.03543 14.02584 14.01611 14.00623
Eg value 6.119445 6.063164 6.007641 5.952865 5.898822 5.8455 5.792888 5.740975 5.689749 5.639198
Doping of P component in a Binary semiconductor like InAs and changing the composition of do pant has actually resulted in lowering of Band Energy Gap. Future Plans: 1) Current data set of Electro Negativity values of InPxAs1-x III-V Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future. 2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance.
Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications. 2) Limited theoretical work on Electro Negativity values and Band Energy Gap of InPxAs1-x III-V Ternary Semiconductors with in the Composition range of (0 Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering. Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy.
References: 1) IUPAC Gold Book internet edition: "Electronegativity". 2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582.. 3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332 . 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6. 5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.. 6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793.. 7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585.. 8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167. 10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264.. 11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13) CRC Handbook of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259 15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical polarizability.,