Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 Electro Negativity values of Elemental Semiconductors: Compound Al Ga As In P Sb N E.N value 1.5 1.8 2 1.7 2.1 1.9 3
Electro Negativity values of GaAsxSb1-x III-V Ternary Semiconductor
X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5
Compound GaAsxSb1-x XM value 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 XN value 1.9 1.909771 1.914675 1.919592 1.924521 1.929463 1.934418 1.939386 1.944366(XM/XN)2 0.897507 0.888347 0.883802 0.87928 0.874782 0.870306 0.865853 0.861423 0.857016 0.852632 (XM-XN)2 0.01 0.01205 0.01315 0.014302 0.015506 0.016761 0.018068 0.019428 0.020841 0.022308 2(XM-XN)2 1.006956 1.008387 1.009157 1.009963 1.010806 1.011685 1.012603 1.013558 1.014551 1.015583 (2(XM-XN)2)1/4 1.001734 1.00209 1.002281 1.002481 1.002691 1.002909 1.003136 1.003372 1.003618 1.003873 28.8/(2(XM-XN)2)1/4 28.75014 28.73993 28.73445 28.72871 28.72272 28.71647 28.70997 28.7032 28.69617 28.68888
ALPHA-M 110.32 107.563 106.1845 104.806 103.4275 102.409 100.6705 99.292 97.9135 96.535 RO-VALUES 5.62 5.589 5.5735 5.558 5.5425 5.527 5.5115 5.496 5.4805 5.465 M-VALUES 191.48 189.796 184.454 182.112 179.77 177.428 175.086 172.744 170.402 168.06 ALPHA-M*RO/M 3.237928 3.167451 3.208493 3.198646 3.18878 3.190108 3.168988 3.159061 3.149112 3.139139
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 8.16E+24 7.99E+24 8.09E+24 8.07E+24 8.04E+24 8.04E+24 7.99E+24 7.97E+24 7.94E+24 7.92E+24 1-(4PIN/3)*ALPHAM*RO/M 8.16E+24 7.99E+24 8.09E+24 8.07E+24 8.04E+24 8.04E+24 7.99E+24 7.97E+24 7.94E+24 7.92E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.63E+25 1.6E+25 1.62E+25 1.61E+25 1.61E+25 1.61E+25 1.6E+25 1.59E+25 1.59E+25 1.58E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.37507 14.36996 14.36722 14.36436 14.36136 14.35824 14.35498 14.3516 14.34809 14.34444
Eg value 10.93863 10.67141 10.54116 10.41307 10.28711 10.16324 10.04141 9.921586 9.803728 9.687796
X value 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1-x value 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
Compound XM value 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 XN value 1.954365 1.959383 1.964415 1.96946 1.974517 1.979588 1.984671 1.989768 1.994877 2 (XM/XN)2 0.848269 0.843929 0.839612 0.835316 0.831042 0.826791 0.822561 0.818352 0.814165 0.81 (XM-XN)2 0.023828 0.025403 0.027032 0.028717 0.030456 0.032252 0.034103 0.036012 0.037977 0.04 2(XM-XN)2 1.016654 1.017764 1.018914 1.020104 1.021335 1.022607 1.02392 1.025276 1.026673 1.028114 (2(XM-XN)2)1/4 1.004138 1.004412 1.004695 1.004989 1.005292 1.005604 1.005927 1.00626 1.006603 1.006956 28.8/(2(XM-XN)2)1/4 28.68133 28.6735 28.66541 28.65704 28.6484 28.63949 28.6303 28.62084 28.61109 28.60106
ALPHA-M 95.1565 93.778 92.3995 91.021 89.6425 88.264 86.8855 85.507 84.1285 82.75 RO-VALUES 5.4495 5.434 5.4185 5.403 5.3875 5.372 5.3565 5.341 5.3255 5.31 M-VALUES 165.718 163.376 161.034 158.692 156.35 154.008 151.666 149.324 146.982 144.64
ALPHA-M*RO/M 3.129143 3.119122 3.109074 3.099 3.088897 3.078763 3.068599 3.058402 3.048171 3.037904
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 7.89E+24 7.87E+24 7.84E+24 7.81E+24 7.79E+24 7.76E+24 7.74E+24 7.71E+24 7.69E+24 7.66E+24 1-(4PIN/3)*ALPHAM*RO/M 7.89E+24 7.87E+24 7.84E+24 7.81E+24 7.79E+24 7.76E+24 7.74E+24 7.71E+24 7.69E+24 7.66E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.58E+25 1.57E+25 1.57E+25 1.56E+25 1.56E+25 1.55E+25 1.55E+25 1.54E+25 1.54E+25 1.53E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.34066 14.33675 14.3327 14.32852 14.3242 14.31975 14.31515 14.31042 14.30555 14.30053
Eg value 9.573753 9.461561 9.351185 9.242588 9.135738 9.030599 8.927139 8.825325 8.725127 8.626513
Doping of Al component in a Binary semiconductor like GaSb and changing the composition of do pant has actually resulted in lowering of Band Energy Gap.
Future Plans: 1) Current data set of Electro Negativity values of GaAsxSb1-x III-V Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future. 2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance.
Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications. 2) Limited theoretical work on Electro Negativity values and Band Energy Gap of GaAsxSb1-x III-V Ternary Semiconductors with in the Composition range of (0 Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering. Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy.
References: 1) IUPAC Gold Book internet edition: "Electronegativity". 2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582.. 3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332 . 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6. 5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.. 6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793.. 7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585.. 8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167. 10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264.. 11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13) CRC Handbook of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259 15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical polarizability.,