Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 Electro Negativity values of Elemental Semiconductors: Compound Al Ga As In P Sb N E.N value 1.5 1.8 2 1.7 2.1 1.9 3
Electro Negativity values of InxGa1-xSb III-V Ternary Semiconductor
X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 Compound InxGa1-xSb XM value1.8 1.789741 1.784633 1.77954 1.774462 1.769398 1.764348 1.759313 1.754292 1.749286 XN value 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 (XM/XN)2 0.897506925 0.887305 0.882248 0.87722 0.87222 0.867249 0.862306 0.857391 0.852504 0.847645 (XM-XN)2 0.01 0.012157 0.013309 0.014511 0.01576 0.017057 0.018401 0.019793 0.021231 0.022715 2(XM-XN)2 1.00695555 1.008462 1.009268 1.010109 1.010984 1.011893 1.012837 1.013814 1.014825 1.015869
(2(XM-XN)2)1/4 1.00173437 1.002109 1.002309 1.002518 1.002735 1.00296 1.003194 1.003436 1.003686 1.003944 28.8/(2(XM-XN)2)1/4 28.75013662 28.73939 28.73365 28.72767 28.72146 28.715 28.70831 28.70139 28.69424 28.68686
ALPHA-M 110.32 113 114 115 116 118 119 120 121 123 RO-VALUES 5.619 5.636 5.644 5.652 5.66 5.668 5.676 5.684 5.692 5.7 M-VALUES 191.48 196 198 201 203 205 207 210 212 214 ALPHA-M*RO/M 3.237351577 3.249327 3.249576 3.233731 3.234286 3.262556 3.263014 3.248 3.248736 3.276168 TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 8.1634E+24 8.19E+24 8.19E+24 8.15E+24 8.16E+24 8.23E+24 8.23E+24 8.19E+24 8.19E+24 8.26E+24 1-(4PIN/3)*ALPHAM*RO/M 8.1634E+24 8.19E+24 8.19E+24 8.15E+24 8.16E+24 8.23E+24 8.23E+24 8.19E+24 8.19E+24 8.26E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.63268E+25 1.64E+25 1.64E+25 1.63E+25 1.63E+25 1.65E+25 1.65E+25 1.64E+25 1.64E+25 1.65E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-pi12/1+2*pi12) 14.37506831 14.3697 14.36683 14.36384 14.36073 14.3575 14.35416 14.35069 14.34712 14.34343
Eg values10.93862962 10.64166 10.49734 10.35572 10.21674 10.08034 9.946459 9.815049 9.686054 9.559422
Compound XM value1.744293 1.739315 1.734352 1.729402 1.724467 1.719545 1.714638 1.709745 1.704865 1.7 XN value1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 (XM/XN)2 0.842814 0.838011 0.833234 0.828485 0.823763 0.819068 0.8144 0.809758 0.805143 0.800554 (XM-XN)20.024245 0.02582 0.027439 0.029104 0.030812 0.032564 0.034359 0.036197 0.038078 0.04
2(XM-XN)2 1.016947 1.018058 1.019202 1.020378 1.021587 1.022828 1.024102 1.025407 1.026745 1.028114 (2(XM-XN)2)1/4 1.00421 1.004484 1.004766 1.005056 1.005354 1.005659 1.005972 1.006292 1.00662 1.006956 28.8/(2(XM-XN)2)1/4 28.67926 28.67143 28.66338 28.65512 28.64664 28.63794 28.62904 28.61992 28.61059 28.60106
ALPHA-M 124 125 126 127 129 130 131 132 133 134.691 RO-VALUES 5.708 5.716 5.724 5.732 5.74 5.748 5.756 5.764 5.772 5.78 M-VALUES 216 219 221 223 225 228 230 232 234 236.58 ALPHA-M*RO/M 3.276815 3.262557 3.263457 3.264413 3.290933 3.277368 3.278417 3.279517 3.280667 3.290701
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 (4PIN/3)*ALPHAM*RO/M 8.26E+24 8.23E+24 8.23E+24 8.23E+24 8.3E+24 8.26E+24 8.27E+24 8.27E+24 8.27E+24 8.3E+24 1-(4PIN/3)*ALPHAM*RO/M 8.26E+24 8.23E+24 8.23E+24 8.23E+24 8.3E+24 8.26E+24 8.27E+24 8.27E+24 8.27E+24 8.3E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.65E+25 1.65E+25 1.65E+25 1.65E+25 1.66E+25 1.65E+25 1.65E+25 1.65E+25 1.65E+25 1.66E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.33963 14.33572 14.33169 14.32756 14.32332 14.31897 14.31452 14.30996 14.3053 14.30053
Eg value9.435102 9.313045 9.193201 9.075523 8.959965 8.846483 8.735031 8.625567 8.51805 8.412437
Doping of In component in a Binary semiconductor like GaSb and changing the composition of do pant has actually resulted in lowering of Band Energy Gap.
Future Plans: 1) Current data set of Electro Negativity values of InxGa1-xSb III-V Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future. 2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance.
Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications. 2) Limited theoretical work on Electro Negativity values and Band Energy Gap of InxGa1-xSb III-V Ternary Semiconductors with in the Composition range of (0 Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering. Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy.
References: 1) IUPAC Gold Book internet edition: "Electronegativity". 2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582.. 3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332 . 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6. 5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.. 6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793.. 7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585.. 8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167. 10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264.. 11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13) CRC Handbook of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259 15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical polarizability.,