Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 Electro Negativity values of Elemental Semiconductors: Compound Al Ga As In P Sb N E.N value 1.5 1.8 2 1.7 2.1 1.9 3
Electro Negativity values of InAsxSb1-x III-V Ternary Semiconductor
X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 Compound InAsxSb1-x XM value 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 XN value 1.9 1.909771 1.914675 1.919592 1.924521 1.929463 1.934418 1.939386 1.944366 1.949359 (XM/XN)2 0.800554017 0.792383 0.788329 0.784296 0.780284 0.776291 0.77232 0.768368 0.764437 0.760526 2(XM-XN)2 1.028113827 1.030971 1.03246 1.033989 1.035559 1.037171 1.038824 1.040521 1.04226 1.044042 (2(XM-XN)2)1/4 1.00695555 1.007654 1.008018 1.008391 1.008774 1.009166 1.009568 1.00998 1.010401 1.010833 28.8/(2(XM-XN)2)1/4 28.60106387 28.58123 28.57092 28.56035 28.54952 28.53842 28.52706 28.51542 28.50352 28.49135
ALPHA-M 134.69 132 130 129 127 126 124 123 121 120 RO-VALUES 5.775 5.768 5.762 5.756 5.75 5.744 5.738 5.726 5.726 5.72 M-VALUES 236.58 232 230 227 225 223 220 218 216 213 ALPHA-M*RO/M 3.287829698 3.281793 3.256783 3.271031 3.245556 3.245489 3.234145 3.230725 3.20762 3.222535
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 8.29069E+24 8.28E+24 8.21E+24 8.25E+24 8.18E+24 8.18E+24 8.16E+24 8.15E+24 8.09E+24 8.13E+24
1-(4PIN/3)*ALPHAM*RO/M 8.29069E+24 8.28E+24 8.21E+24 8.25E+24 8.18E+24 8.18E+24 8.16E+24 8.15E+24 8.09E+24 8.13E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.65814E+25 1.66E+25 1.64E+25 1.65E+25 1.64E+25 1.64E+25 1.63E+25 1.63E+25 1.62E+25 1.63E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-pi12/1+2*pi12) 14.30053193 14.29061 14.28546 14.28018 14.27476 14.26921 14.26353 14.25771 14.25176 14.24567
Eg values 8.412437255 8.227031 8.13649 8.047353 7.959596 7.873191 7.788114 7.704341 7.621846 7.540606
Compound XM value1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 XN value1.954365 1.959383 1.964415 1.96946 1.974517 1.979588 1.984671 1.989768 1.994877 2 (XM/XN)2 0.756635 0.752764 0.748913 0.745081 0.741269 0.737477 0.733704 0.72995 0.726215 0.7225 (XM-XN)2 0.064701 0.06728 0.069915 0.072608 0.07536 0.078169 0.081038 0.083965 0.086953 0.09
2(XM-XN)21.045868 1.047739 1.049655 1.051616 1.053624 1.055678 1.057779 1.059927 1.062124 1.06437 (2(XM-XN)2)1/4 1.011275 1.011727 1.012189 1.012662 1.013144 1.013638 1.014142 1.014656 1.015182 1.015718 28.8/(2(XM-XN)2)1/4 28.4789 28.46618 28.45318 28.43991 28.42635 28.41251 28.3984 28.38399 28.3693 28.35432
ALPHA-M 118 117 115 114 112 111 109 108 106 104.9 RO-VALUES 5.714 5.698 5.692 5.686 5.686 5.684 5.678 5.672 5.666 5.66 M-VALUES 211 208 206 204 201 199 197 194 192 189.74 ALPHA-M *RO 674.252 666.666 654.58 648.204 636.832 630.924 618.902 612.576 600.596 593.734 ALPHA-M*RO/M 3.195507 3.205125 3.177573 3.177471 3.168318 3.170472 3.141635 3.157608 3.128104 3.129198
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 8.06E+24 8.08E+24 8.01E+24 8.01E+24 7.99E+24 7.99E+24 7.92E+24 7.96E+24 7.89E+24 7.89E+24 1-(4PIN/3)*ALPHAM*RO/M 8.06E+24 8.08E+24 8.01E+24 8.01E+24 7.99E+24 7.99E+24 7.92E+24 7.96E+24 7.89E+24 7.89E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.61E+25 1.62E+25 1.6E+25 1.6E+25 1.6E+25 1.6E+25 1.58E+25 1.59E+25 1.58E+25 1.58E+25 1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.23945 14.23309 14.22659 14.21995 14.21318 14.20626 14.1992 14.192 14.18465 14.17716
Eg value7.460599 7.381801 7.304191 7.227746 7.152446 7.07827 7.005197 6.933207 6.862281 6.7924
Doping of As component in a Binary semiconductor like InSb and changing the composition of do pant has actually resulted in lowering of Band Energy Gap.
Future Plans: 1) Current data set of Electro Negativity values of InAsxSb1-x III-V Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future. 2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance.
Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications. 2) Limited theoretical work on Electro Negativity values and Band Energy Gap of InAsxSb1-x III-V Ternary Semiconductors with in the Composition range of (0 Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering. Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy.
References: 1) IUPAC Gold Book internet edition: "Electronegativity". 2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582.. 3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332 . 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6. 5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.. 6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793.. 7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585.. 8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167. 10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264.. 11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13) CRC Handbook of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259 15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical polarizability.,