Amazines Free Article Archive
www.amazines.com - Friday, January 10, 2025
Read about the most recent changes and happenings at Amazines.com
Log into your account or register as a new author. Start submitting your articles right now!
Search our database for articles.
Subscribe to receive articles emailed straight to your email account. You may choose multiple categories.
View our newest articles submitted by our authors.
View our most top rated articles rated by our visitors.
* Please note that this is NOT the ARTICLE manager
Add a new EZINE, or manage your EZINE submission.
Add fresh, free web content to your site such as newest articles, web tools, and quotes with a single piece of code!
Home What's New? Submit/Manage Articles Latest Posts Top Rated Article Search
Google
Subscriptions Manage Ezines
CATEGORIES
 Article Archive
 Advertising (133574)
 Advice (161671)
 Affiliate Programs (34799)
 Art and Culture (73858)
 Automotive (145718)
 Blogs (75619)
 Boating (9851)
 Books (17224)
 Buddhism (4130)
 Business (1330906)
 Business News (426455)
 Business Opportunities (366525)
 Camping (10973)
 Career (72795)
 Christianity (15852)
 Collecting (11638)
 Communication (115089)
 Computers (241958)
 Construction (38968)
 Consumer (49954)
 Cooking (17080)
 Copywriting (6733)
 Crafts (18203)
 Cuisine (7549)
 Current Affairs (20322)
 Dating (45910)
 EBooks (19703)
 E-Commerce (48272)
 Education (185530)
 Electronics (83525)
 Email (6438)
 Entertainment (159862)
 Environment (28995)
 Ezine (3040)
 Ezine Publishing (5454)
 Ezine Sites (1551)
 Family & Parenting (111009)
 Fashion & Cosmetics (196613)
 Female Entrepreneurs (11853)
 Feng Shui (134)
 Finance & Investment (310623)
 Fitness (106492)
 Food & Beverages (63057)
 Free Web Resources (7941)
 Gambling (30227)
 Gardening (25202)
 Government (10519)
 Health (630171)
 Hinduism (2206)
 Hobbies (44083)
 Home Business (91744)
 Home Improvement (251247)
 Home Repair (46253)
 Humor (4727)
 Import - Export (5461)
 Insurance (45104)
 Interior Design (29621)
 International Property (3488)
 Internet (191027)
 Internet Marketing (146690)
 Investment (22863)
 Islam (1161)
 Judaism (1352)
 Law (80500)
 Link Popularity (4596)
 Manufacturing (20930)
 Marketing (99325)
 MLM (14140)
 Motivation (18236)
 Music (27000)
 New to the Internet (9498)
 Non-Profit Organizations (4048)
 Online Shopping (129741)
 Organizing (7813)
 Party Ideas (11855)
 Pets (38165)
 Poetry (2229)
 Press Release (12691)
 Public Speaking (5643)
 Publishing (7566)
 Quotes (2407)
 Real Estate (126832)
 Recreation & Leisure (95495)
 Relationships (87677)
 Research (16182)
 Sales (80358)
 Science & Technology (110298)
 Search Engines (23521)
 Self Improvement (153317)
 Seniors (6222)
 Sexuality (36012)
 Small Business (49344)
 Software (83053)
 Spiritual (23536)
 Sports (116155)
 Tax (7664)
 Telecommuting (34070)
 Travel & Tourism (308289)
 UK Property Investment (3123)
 Video Games (13382)
 Web Traffic (11795)
 Website Design (56939)
 Website Promotion (36667)
 World News (1000+)
 Writing (35847)
Author Spotlight
RAHUL JOHN

The venture glorifies your life with the essence of sumptuous features that carries you in the world...more
SUNNY NASH

Sunny Nash is the award-winning American author of Bigmama Didn’t Shop At Woolworth’s, recognized by...more
A TEKGENRE

A.J.Pipkin is a UK based home appliance and gadget fan and reviewer of quality headphones, specialis...more
VINCENT BOSSLEY

Vincent Bossley is a publisher and sailor living on the Northern Beaches of Sydney Australia. He has...more
SHOEB SIDDIQUE

From the time of study, i had a keen interest in acquiring knowledge by surfing on the Internet. Mea...more


Resonator by big tree





Article Author Biography
Resonator by
Article Posted: 07/30/2010
Article Views: 44
Articles Written: 1033
Word Count: 1931
Article Votes: 0
AddThis Social Bookmark Button

Resonator


 
Business,Business News,Business Opportunities
Explanation
A physical system can have as many resonance frequencies as it has degrees of freedom; each degree of freedom can vibrate as a harmonic oscillator. Systems with one degree of freedom, such as a mass on a spring, pendulums, balance wheels, and LC tuned circuits have one resonance frequency. Systems with two degrees of freedom, such as coupled pendulums and resonant transformers can have two resonance frequencies. As the number of coupled harmonic oscillators grows, the time it takes to transfer energy from one to the next becomes significant. The vibrations in them begin to travel through the coupled harmonic oscillators in waves, from one oscillator to the next.
Resonators can be viewed as being made of millions of coupled moving parts (such as atoms). Therefore they can have millions of resonance frequencies, although only a few may be used in practical resonators. The vibrations inside them travel as waves, at an approximately constant velocity, bouncing back and forth between the sides of the resonator. The oppositely moving waves interfere with each other to create a pattern of standing waves in the resonator. If the distance between the sides is , the length of a round trip is . In order to cause resonance, the phase of a sinusoidal wave after a round trip has to be equal to the initial phase, so the waves will reinforce. So the condition for resonance in a resonator is that the round trip distance, , be equal to an integral number of wavelengths of the wave:
If the velocity of a wave is , the frequency is so the resonance frequencies are:
So the resonance frequencies of resonators, called normal modes, are equally spaced multiples (harmonics), of a lowest frequency called the fundamental frequency. The above analysis assumes the medium inside the resonator is homogeneous, so the waves travel at a constant speed, and that the shape of the resonator is rectilinear. If the resonator is inhomogeneous or has a nonrectilinear shape, like a circular drumhead or a cylindrical microwave cavity, the resonance frequencies may not occur at equally spaced multiples of the fundamental frequency. They are then called overtones instead of harmonics. There may be several such series of resonance frequencies in a single resonator, corresponding to different modes of vibration.
Electromagnetic
Electromagnetism
Electricity  Magnetism
Electrostatics
Electric charge  Coulomb's law  Electric field  Electric flux  Gauss's law  Electric potential  Electrostatic induction  Electric dipole moment  Polarization density
Magnetostatics
Ampre law  Electric current  Magnetic field  Magnetization  Magnetic flux  Biotavart law  Magnetic dipole moment  Gauss's law for magnetism
Electrodynamics
Free space  Lorentz force law  emf  Electromagnetic induction  Faraday law  Lenz's law  Displacement current  Maxwell's equations  EM field  Electromagnetic radiation  Linard-Wiechert Potential  Maxwell tensor  Eddy current
Electrical Network
Electrical conduction  Electrical resistance  Capacitance  Inductance  Impedance  Resonant cavities  Waveguides
Covariant formulation
Electromagnetic tensor  EM Stress-energy tensor  Four-current  Electromagnetic four-potential
Scientists
Ampre  Coulomb  Faraday  Gauss  Heaviside  Henry  Hertz  Lorentz  Maxwell  Tesla  Volta  Weber  rsted
This box: view  talk  edit
An electrical circuit composed of discrete components can act as a resonator when both an inductor and capacitor are included. Oscillations are limited by the inclusion of a resistor, which will be present, even if not specifically included, due to the resistance of the inductor windings. Such resonant circuits are also called RLC circuits after the circuit symbols for the components.
A distributed-parameter resonator has capacitance, inductance, and resistance that cannot be isolated into separate lumped capacitors, inductors, or resistors. An example of this, much used in filtering, is the helical resonator.
A single layer coil (or solenoid) that is used as a secondary or tertiary winding in a Tesla coil or magnifying transmitter is also a distributed resonator.
Cavity resonators
A cavity resonator is a hollow conductor blocked at both ends and along which an electromagnetic wave can be supported. It can be viewed as a waveguide short-circuited at both ends.
The cavity has interior surfaces which reflect a wave of a specific frequency. When a wave that is resonant with the cavity enters, it bounces back and forth within the cavity, with low loss (see standing wave). As more wave energy enters the cavity, it combines with and reinforces the standing wave, increasing its intensity.
Examples
RF cavities in the linac of the Australian Synchrotron are used to accelerate and bunch beams of electrons; the linac is the tube passing through the middle of the cavity
An illustration of the electric and magnetic field of one of the possible modes in a cavity resonator
The cavity magnetron is a vacuum tube with a filament in the center of an evacuated, lobed, circular cavity resonator. A perpendicular magnetic field is imposed by a permanent magnet. The magnetic field causes the electrons, attracted to the (relatively) positive outer part of the chamber, to spiral outward in a circular path rather than moving directly to this anode. Spaced about the rim of the chamber are cylindrical cavities. The cavities are open along their length and so connect the common cavity space. As electrons sweep past these openings they induce a resonant high frequency radio field in the cavity, which in turn causes the electrons to bunch into groups. A portion of this field is extracted with a short antenna that is connected to a waveguide (a metal tube usually of rectangular cross section). The waveguide directs the extracted RF energy to the load, which may be a cooking chamber in a microwave oven or a high gain antenna in the case of radar.
The klystron, tube waveguide, is a beam tube including at least two apertured cavity resonators. The beam of charged particles passes through the apertures of the resonators, often tunable wave reflection grids, in succession. A collector electrode is provided to intercept the beam after passing through the resonators. The first resonator causes bunching of the particles passing through it. The bunched particles travel in a field-free region where further bunching occurs, then the bunched particles enter the second resonator giving up their energy to excite it into oscillations. It is a particle accelerator that works in conjunction with a specifically tuned cavity by the configuration of the structures. On the beamline of an accelerator system, there are specific sections that are cavity resonators for RF.
The reflex klystron is a klystron utilizing only a single apertured cavity resonator through which the beam of charged particles passes, first in one direction. A repeller electrode is provided to repel (or redirect) the beam after passage through the resonator back through the resonator in the other direction and in proper phase to reinforce the oscillations set up in the resonator.
In a laser, light is amplified in a cavity resonator which is usually composed of two or more mirrors. Thus an optical cavity, also known as a resonator, is a cavity with walls which reflect electromagnetic waves (light). This will allow standing wave modes to exist with little loss outside the cavity.
Mechanical
Mechanical resonators are used in electronic circuits to generate signals of a precise frequency. These are called piezoelectric resonators, the most common of which is the quartz crystal. They are made of a thin plate of quartz with metal plates attached to each side, or in low frequency clock applications a tuning fork shape. The quartz material performs two functions. Its high dimensional stability and low temperature coefficient makes it a good resonator, keeping the resonant frequency constant. Second, the quartz's piezoelectric property converts the mechanical vibrations into an oscillating voltage, which is picked up by the plates on its surface, which are electrically attached to the circuit. These crystal oscillators are used in quartz clocks and watches, to create the clock signal that runs computers, and to stabilize the output signal from radio transmitters. Mechanical resonators can also be used to induce a standing wave in other medium. For example a multiple degree of freedom system can be created by imposing a base excitation on a cantilever beam. In this case the standing wave is imposed on the beam . This type of system can be used as a sensor to track changes in frequency or phase of the resonance of the fiber. One application is as a measurement device for dimensional metrology.
Acoustic
The most familiar examples of acoustic resonators are in musical instruments. Every musical instrument has resonators. Some generate the sound directly, such as the wooden bars in a xylophone, the head of a drum, the strings in stringed instruments, and the pipes in an organ. Some modify the sound by enhancing particular frequencies, such as the sound box of a guitar or violin. Organ pipes, the bodies of woodwinds, and the sound boxes of stringed instruments are examples of acoustic cavity resonators.
Automobiles
The exhaust pipes in automobile exhaust systems are designed as acoustic resonators that work with the muffler to reduce noise, by making sound waves "cancel each other out". The "exhaust note" is an important feature for many vehicle owners, so both the original manufacturers and the after-market suppliers use the resonator to enhance the sound. In 'tuned exhaust' systems designed for performance the resonance of the exhaust pipes is also used to 'pull' the combustion products out of the combustion chamber quicker.
Percussion instruments
In many keyboard percussion instruments, below the centre of each note is a tube, which is an acoustic cavity resonator, referred to simply as the resonator. The length of the tube varies according to the pitch of the note, with higher notes having shorter resonators. The tube is open at the top end and closed at the bottom end, creating a column of air which resonates when the note is struck. This adds depth and volume to the note. In string instruments, the body of the instrument is a resonator.
The tremolo effect of a vibraphone is obtained by a mechanism which opens and shuts the resonators.
Stringed instruments
String instruments such as the bluegrass banjo may also have resonators. Many five-string banjos have removable resonators, to allow the instrument to be used with resonator in bluegrass style, or without in folk music style. The term resonator, used by itself, may also refer to the resonator guitar.
The modern ten-string guitar, invented by Narciso Yepes, adds four string resonators to the traditional classical guitar. By tuning these resonators in a very specific way (C, Bb, Ab, Gb) and making use of their strongest partials (corresponding to the octaves and fifths of the strings' fundamental tones), the bass strings of the guitar now resonate equally with any of the 12 tones of the chromatic octave. The Guitar Resonator is a device for driving guitar string harmonics by an electromagnetic field. This resonance effect is caused by a feedback loop and is applied to drive the fundamental tones, octaves, 5th, 3th to an infinitely sustain.
References and notes
^ M.B. Bauza, R.J Hocken, S.T Smith, S.C Woody, (2005), The development of a virtual probe tip with application to high aspect ratio microscale features, Rev. Sci Instrum, 76 (9) 095112  .
^ http://www.insitutec.com
See also
Crab cavity
Oscillation
Resonance
Mechanical resonance
Electrical resonance
Acoustic resonance
Superconducting RF
Magnetic resonance
Helical resonator
Optical ring resonators
Standing waves
Categories: Acoustics

Electromagnetism

Musical instrument parts and accessoriesHidden categories: Articles lacking sources from January 2008

All articles lacking sources

Articles needing cleanup from September 2008

All pages needing cleanup

I am an expert from China Manufacturers, usually analyzes all kind of industries situation, such as deck tiles , terracotta tiles.

Related Articles - deck tiles, terracotta tiles,

Email this Article to a Friend!

Receive Articles like this one direct to your email box!
Subscribe for free today!

 Rate This Article  
Completely useless, should be removed from directory.
Minimal useful information.
Decent and informative.
Great article, very informative and helpful.
A 'Must Read'.

 

Do you Agree or Disagree? Have a Comment? POST IT!

 Reader Opinions 
Submit your comments and they will be posted here.
Make this comment or to the Author only:
Name:
Email:
*Your email will NOT be posted. This is for administrative purposes only.
Comments: *Your Comments WILL be posted to the AUTHOR ONLY if you select PRIVATE and to this PUBLIC PAGE if you select PUBLIC, so write accordingly.
 
Please enter the code in the image:



 Author Login 
LOGIN
Register for Author Account

 

Advertiser Login

 

ADVERTISE HERE NOW!
   Limited Time $60 Offer!
   90  Days-1.5 Million Views  

 

Great Paranormal Romance


TIM FAY

After 60-plus years of living, I am just trying to pass down some of the information that I have lea...more
PAUL PHILIPS

For more articles, blog messages & videos and a free e-book download go to www.NewParadigm.ws your p...more
STEVERT MCKENZIE

Stevert Mckenzie, Travel Enthusiast. ...more
LAURA JEEVES

At LeadGenerators, we specialise in content-led Online Marketing Strategies for our clients in the t...more
ADRIAN JOELE

I have been involved in nutrition and weight management for over 12 years and I like to share my kn...more
GENE MYERS

Author of four books and two screenplays; frequent magazine contributor. I have four other books "in...more
DONNIE LEWIS

I'm an avid consumer of a smoothie a day living, herbs, vitamins and daily dose of exercise. I'm 60...more
ALEX BELSEY

I am the editor of QUAY Magazine, a B2B publication based in the South West of the UK. I am also the...more
SUSAN FRIESEN

Located in the lower mainland of B.C., Susan Friesen is a visionary brand strategist, entrepreneur, ...more
STEPHEN BYE

Steve Bye is currently a fiction writer, who published his first novel, ‘Looking Forward Through the...more

HomeLinksAbout UsContact UsTerms of UsePrivacy PolicyFAQResources
Copyright © 2025, All rights reserved.
Some pages may contain portions of text relating to certain topics obtained from wikipedia.org under the GNU FDL license