Abstract: Antimonide III-V Ternary semiconductors are very important as an x of a constituent in the semiconductor is going to have significant changes in calculating Thermal Physical Property like Melting point. These Ternary Compounds can be derived from binary compounds by replacing one half of the atoms in one sub lattice by lower valence atoms, the other half by higher valence atoms and maintaining average number of valence electrons per atom. The subscript X refers to the alloy content or concentration of the material, which describes proportion of the material added and replaced by alloy material. This paper represents investigation of Melting point of Antimonide III-V Ternary Semiconductors. Keywords: Composition, Thermal property, Melting point, III-V Ternary semiconductors, Antimonide group Introduction: 1) In this opening talk of Investigation of Melting point of Antimonide III-V Ternary Semiconductors dopant is added to the semiconductor to variate most important Physical property 2) The continuous variation of Thermal Physical properties like Melting point of ternary compounds with relative concentration of constituents is of utmost utility in development of solid-state technology. 3) In the present work, the solid solutions belonging to Antimonide III-V Ternary Semiconductors have been investigated. In order to have better understanding of performance of these solid solutions for any particular application, it becomes quite necessary to work on the Thermal Physical properties like melting point 4) Recently no other class of material of semiconductors has attracted so much scientific and commercial attention like the Antimonide III-V Ternary compounds. 5) Doping of component in a Binary semiconductors and changing the composition of do pant has actually resulted in lowering of Melting point. 6) Thus effect of do pant decreases the Melting point and finds extensive applications 7) The present investigation relates Thermal Physical property like Melting point with variation of composition for Antimonide III-V Ternary Semiconductor. 8) The fair agreement between calculated and reported values of Melting point of Antimonide III-V Ternary semiconductors give further extension Physical Properties for Ternary semiconductors. 9) The present work opens new line of approach to Thermal Physical property like Melting point in Antimonide III-V Ternary Semiconductors Objective: The main Objective of this paper is to calculate Melting point of Antimonide III-V Ternary Semiconductors Purpose: The purpose of study is to calculate Melting point of Antimonide III-V Ternary Semiconductors This paper includes Melting point variation with Composition of Dopant Theoretical Impact: Compound AlAs GaAs InAs InP GaP AlSb InSb GaN AlN InN AlP GaSb Melting point 2013 1510 1215 1330 1750 1330 798 1500 2500 1200 2100 980 Compound 1) AlxIn1-xSb=AlSb+InSb M.P OF Ternary 798 851.2 877.8 904.4 931 957.6 984.2 1010.8 1037.4 1064 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1090.6 1117.2 1143.8 1170.4 1197 1223.6 1250.2 1276.8 1303.4 1330 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 2) Al1-xInxSb=InSb+AlSb M.P OF Ternary 1330 1276.8 1250.2 1223.6 1197 1170.4 1143.8 1117.2 1090.6 1064 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1037.4 1010.8 984.2 957.6 931 904.4 877.8 851.2 824.6 798 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 3) InAs1-xSbx=InSb+InAs M.P OF Ternary 1215 1173.3 1152.5 1131.6 1110.8 1089.9 1069.1 1048.2 1027.4 1006.5 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 985.65 964.8 943.95 923.1 902.25 881.4 860.55 839.7 818.85 798 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 4) InAsxSb1-x=InAs+InSb M.P OF Ternary 798 839.7 860.55 881.4 902.25 923.1 943.95 964.8 985.65 1006.5 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1027.4 1048.2 1069.1 1089.9 1110.8 1131.6 1152.5 1173.3 1194.2 1215 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 5) InxGa1-xSb=InSb+GaSb M.P OF Ternary 980 961.8 952.7 943.6 934.5 925.4 916.3 907.2 898.1 889 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 879.9 870.8 861.7 852.6 843.5 834.4 825.3 816.2 807.1 798 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 6) In1-xGaxSb=GaSb+InSb M.P OF Ternary 798 816.2 825.3 834.4 843.5 852.6 861.7 870.8 879.9 889 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 898.1 907.2 916.3 925.4 934.5 943.6 952.7 961.8 970.9 980 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 7) Al1-xGaxSb=GaSb+AlSb M.P OF Ternary 1330 1295 1277.5 1260 1242.5 1225 1207.5 1190 1172.5 1155 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1137.5 1120 1102.5 1085 1067.5 1050 1032.5 1015 997.5 980 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 8) AlxGa1-xSb=AlSb+GaSb M.P OF Ternary 980 1015 1032.5 1050 1067.5 1085 1102.5 1120 1137.5 1155 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1172.5 1190 1207.5 1225 1242.5 1260 1277.5 1295 1312.5 1330 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 9) GaAs1-xSbx=GaSb+GaAs M.P OF Ternary 1510 1457 1430.5 1404 1377.5 1351 1324.5 1298 1271.5 1245 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1218.5 1192 1165.5 1139 1112.5 1086 1059.5 1033 1006.5 980 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 10) GaAsxSb1-x=GaAs+GaSb M.P OF Ternary 980 1033 1059.5 1086 1112.5 1139 1165.5 1192 1218.5 1245 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1271.5 1298 1324.5 1351 1377.5 1404 1430.5 1457 1483.5 1510 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 11) AlAsxSb1-x=AlAs+AlSb M.P OF Ternary 1330 1398.3 1432.5 1466.6 1500.8 1534.9 1569.1 1603.2 1637.4 1671.5 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1705.7 1739.8 1774 1808.1 1842.3 1876.4 1910.6 1944.7 1978.9 2013 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 12) GaP1-xSbx=GaSb+GaP M.P OF Ternary 1750 1673 1634.5 1596 1557.5 1519 1480.5 1442 1403.5 1365 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1326.5 1288 1249.5 1211 1172.5 1134 1095.5 1057 1018.5 980 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 13) GaPxSb1-x=GaP+GaSb M.P OF Ternary 980 1057 1095.5 1134 1172.5 1211 1249.5 1288 1326.5 1365 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1403.5 1442 1480.5 1519 1557.5 1596 1634.5 1673 1711.5 1750 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 14) InP1-xSbx=InSb+InP M.P OF Ternary 1330 1276.8 1250.2 1223.6 1197 1170.4 1143.8 1117.2 1090.6 1064 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1037.4 1010.8 984.2 957.6 931 904.4 877.8 851.2 824.6 798 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 15) InPxSb1-x=InP+InSb M.P OF Ternary 798 851.2 877.8 904.4 931 957.6 984.2 1010.8 1037.4 1064 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1090.6 1117.2 1143.8 1170.4 1197 1223.6 1250.2 1276.8 1303.4 1330 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 16) AlP1-xSbx=AlSb+AlP M.P OF Ternary 2100 2023 1984.5 1946 1907.5 1869 1830.5 1792 1753.5 1715 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1676.5 1638 1599.5 1561 1522.5 1484 1445.5 1407 1368.5 1330 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 17) AlPxSb1-x=AlP+AlSb M.P OF Ternary 1330 1407 1445.5 1484 1522.5 1561 1599.5 1638 1676.5 1715 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1753.5 1792 1830.5 1869 1907.5 1946 1984.5 2023 2061.5 2100 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Doping of component in a Binary semiconductor like Antimonide III-V Ternary Semiconductors and changing the composition of do pant has actually resulted in lowering of Melting point. Future Plans: 1) Current data set of investigation of Melting point of Antimonide III-V Ternary Semiconductors include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future. 2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance. Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications. 2) Limited theoretical work exists on Melting point of Antimonide III-V Ternary Semiconductors with in the Composition range of (0 3) Our results regarding the Thermal Physical Property like Melting point of Antimonide III-V Ternary Semiconductors are found to be in reasonable agreement with the experimental data Results and Discussion: Melting point values of Ternary Semiconductors are used in calculation of Thermal Physical Property of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering. Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy. References: · Goldberg Yu.A. Handbook Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, 1999, pp. 1-36. · S.Adachi, J. Appl. Phys., 58, no.3, pp.R1-R29 (1985). · M.A.Afromowitz, J. Appl. Phys., 44, no.3, pp.1292-1294 (1973). · D.E.Aspnes, Phys. Rev., B14, no.12, pp.5331-5343 (1976). · D.E.Aspnes, S.M.Kelso, R.A.Logan, R.Bhat., J.Appl.Phys., 60, no.2, pp.754-767 (1986). · I. Barin, O. Knacke, O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Springer, Berlin-Heidelberg-New York, 1977. · K. Brennan, K. Hess, J. Appl. Phys., 59, no.3, pp.964-966 (1986). · T. J. Drummond, W. Kopp, R. Fischer, H. Morkoc, J. Appl. Phys., 53, no.2, pp.1028-1029 (1982). · M. Ettenberg, R. J. Paff, J. Appl. Phys., 41, no.10, pp.3926-3927 (1970). · M.A. Haase, M.A. Emanuel, S.C. Smith, J.J. Coleman, and G.E. Stillman, Appl. Phys. Lett., 50, no.7, pp.404-406 (1987). · J.J. Harris, C.T. Foxon, K.W.J. Barhkam, D.E. Lacklison, J. Hewett, C. White, J. Appl. Phys., 61, no.3, pp.1219-1221 (1987) · S. Hava, M. Auslender, J. Appl. Phys., 73, no.11, pp.7431-7434 (1993). · R. Heilman, G. Oelgart, Semicond. Sci. Technol., 5, no 10, pp.1040-1045 (1990). · G. Hill, and P.N.Robson, J.de Physique, 42, Colloque no.7, Suppl. au no.10, pp.C7-335 - C7-341 (1981). · J.H. Hur, C.W. Myles, M.A. Gundersen, J. Appl. Phys., 67, no.11, pp.6917-6923 (1990). · S.C.Jain, J.M.McGregor, D.J.Roulston, J. Appl. Phys., 68, no.7, pp.3747-3749 (1990). · S.C.Jain, and D.J.Roulston, Solid State Electron, 34, no.5, pp.453-465 (1991). · D.W.Jenkins, J. Appl. Phys., 68, no.4, pp.1848-1853 (1990). · K.Kaneko, M.Ayabe, and N.Watanabe, in GaAs and Related Compounds (Inst.of Phys., London, Ser . 33a, 1977), pp.216-226. · J.M.Langer, H.Heinrich, Physica B, 134 no.1-3, pp.444-450 (1985). · B.D.Lichter and P.Sommelet, Trans. Metall. Soc., AIME, 245, pp.1021-1027 (1969). · D.Lippens, O.Vanbesien, in GaAs and Related Compounds (Inst.of Phys., Bristol and Philadelphia, Ser. 91, 1987), pp.757-760. · W.C.Liu, J. Material Sci., 25, no.3, pp.1765-1772 (1990). · D.C.Look, D.K.Lorance, J.R.Sizelove, C.E.Stutz, K.R.Evans, D.W.Whitson, J. Appl. Phys., 71, no.1, pp.260-266 (1992). · W.T.Masselink, Semicond. Sci. Technol., 4, no.7, pp.503-512 (1989). · W.T.Masselink,N.Braslau, D.LaTulipe, W.I.Wang, S.L.Wright, in GaAs and Related Compounds (Inst. of Phys.,Bristol and Philadephia, Ser. 91, 1987), pp.665-668. · B.Monemar, K.K. Shih, and G.D.Pettit, J. Appl. Phys., 47, no.6, pp.2604-2613 (1976). · M.de Murcia, D.Gasquet, E.Richard, P.Wolff, J.Zimmermann, J.Vanbremeersch, AIP Conf. Proc. 285 (Noise in Physical Systems and 1/f fluctuations, St.Louis, USA, 1993), pp.27-30 . · L. Pavesi, M.Guzzi, J. Appl. Phys., 75, no.10, pp.4779-4842 (1994). · P.J.Pearah, W.T.Masselink, J.Klem, T.Henderson, H.Morcoc, C.W.Litton, D.C.Reynolds, Phys.Rev., B32, no.6, pp.3857-3862 (1985). · L.Pfeiffer, K.W.West, H.L.Stormer, K.W.Baldwin, Appl. Phys. Lett., 55, no.18, pp.1888-1890 (1989). · A.N.Pikhtin, A.D.Yas'kov, Sov.Phys.Semicond., 14, no.4, pp.389-392 (1980). · V.M.Robbins, S.C.Smith, G.E.Stillman, Appl. Phys. Lett, 52, no.4, pp.296-298 (1988). · A.K. Sabena, J. Phys. C., 13, no.23, pp. 4323-4334 (1980). · A. K. Sabena, Solid St. Comm., 39, no.7, pp. 839-842 (1981). · A.K.Saxena, Phys. Rev., B24, no.6, pp. 3295-3302 (1981). · M.Shur, Physics of Semiconductor Devices, Prentice Hall, 1990. · A.J. Spring Thorpe, T.D. King, A.J. Beck, J. Electron. Mater. 4, no.1, pp. 101-118 (1975). · G.E.Stillman, C.M. Wolfe, and J.O. Dimmock, J. Phys. Chem. Solids, 31, no. 6, pp. 1199-1204 (1970). · M.Takeshima, J. Appl. Phys., 58, no.10, p.3846 (1985) · M.L. Timmons, J.A. Hutchby, R.K. Ahrenkiel, D.J. Dunlavy, in GaAs and Related Compounds (Inst. of Phys., Bristol and Philadelphia, Ser. 96, 1988), pp. 289-294. · W.Walukiewicz, J. Appl. Phys., 59, no.10, pp.3577-3579 (1986). · Z.Wilamowski, J.Kossut, W.Jantsch, and G.Ostermayer, Semicond.Sci.Technol. 6, no.10B, pp.B38-B46 (1991). · J.J.Yang, W.I.Simpson, L.A.Moudy, in GaAs and Related Compounds (Inst. of Phys., Bristol and London, Ser.63, 1981), pp.107-112. · J.J.Yang, L.A.Moudy, W.I.Simpson, Appl. Phys. Lett. 40, no. 3, pp.244-246 (1982). · H.A.Zarem, J.A.Lebens, K.B.Nordstrom, P.C.Sercel, S.Sanders, L.E.Eng, A.Yariv, K.J.Vahala, Appl.Phys.Lett., 55, no. 25, pp.2622-2624 (1989).
Related Articles -
Composition, Thermal property, Melting point, III-V Ternary semiconductors, Antimonide group,
|